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PG Methods in the Presence of Symmetries

Motivating Abstraction in Reinforcement Learning
▶ How to capture state abstractions for an arbitrary environment?

▶ Equivalence relation on states: (θ1, θ̇1), (θ2, θ̇2) are equivalent (bisimulation relation)
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PG Methods in the Presence of Symmetries

Motivating Abstraction in Reinforcement Learning

▶ Alternatively, define a new MDP with “equivalent” dynamics (MDP homomorphism)
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PG Methods in the Presence of Symmetries

Abstraction in Reinforcement Learning

▶ Some notions of abstraction for MDPs:
▶ Bisimulation [Blute et al., 1997, Givan et al., 2003] and bisimulation metrics [Desharnais

et al., 1999, Ferns et al., 2005, 2011].
▶ Sampling-based similarity metrics [Castro et al., 2021].
▶ Policy similarity metrics [Agarwal et al., 2020].

▶ We focus onMDP homomorphisms [Ravindran and Barto, 2001, 2004]:
▶ Theoretically defined on finiteMDPs.
▶ In practice, applied to continuous states but discrete actions [van der Pol et al., 2020a,b,

Biza and Platt, 2019].
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PG Methods in the Presence of Symmetries

Key Questions

▶ How can we learn an approximate state abstraction without making assumptions
about our environment apriori?

▶ How do we design algorithms which leverage a learned abstraction to improve sample
efficiency and generalization?
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PG Methods in the Presence of Symmetries

Our Contributions

1. Defined continuous MDP homomorphisms on continuous state and action spaces.
2. Proved that value and optimal value functions are preserved by continuous MDP

homomorphisms.
3. Derived the Homomorphic Policy Gradient (HPG) theorem.
4. Developed a deep actor-critic algorithm for learning the optimal policy simultaneously

with the MDP homomorphism map in challenging continuous control problems
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PG Methods in the Presence of Symmetries

Background: Bisimulation and Lax Bisimulation
▶ Bisimulation captures indistinguishability of reward and transitions for all a ∈ A.

▶ The Bisimulation metricmeasures how far apart two state pairs are:

dbisim
(
si, sj

)
= max

a∈A
cr
∣∣R(si, a)− R(sj, a)

∣∣+ ctK
(
τa(·|si), τa(·|sj)

)
K is the Kantorovich (Wasserstein) metric, measuring the distance between the two
transition probabilities.

▶ Lax bisimulation relaxes the requirement on action matching. It is precisely the same
relation as an MDP homomorphism [Taylor et al., 2008].

▶ The Lax bisimulation metricmeasures the lax bisimilarity of state-action pairs:

dlax
(
(si, ai), (sj, aj)

)
= cr

∣∣R(si, ai)− R(sj, aj)
∣∣+ ctK

(
τai(·|si), τaj(·|sj)

)
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PG Methods in the Presence of Symmetries

Background: MDP Homomorphisms
Definition (MDP Homomorphism)

AnMDP homomorphism h=(f, gs) :M→M is a surjective map from a finite MDP
M=(S,A,R, τa, γ) onto an abstract finite MDPM=(S,A,R, τa, γ) where f :S→S and
gs :A→A satisfying the following commutative diagrams:
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PG Methods in the Presence of Symmetries

Background: MDP Homomorphisms

gs(a) = a or − a, depending on s.
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PG Methods in the Presence of Symmetries

Background: MDP Homomorphisms
▶ The optimal value equivalence betweenM andM [Ravindran and Barto, 2001]:

V∗(s) = V∗
(f(s)) ∀s ∈ S, Q∗(s, a) = Q∗

(f(s), gs(a)) ∀s ∈ S, a ∈ A

▶ Policy lifting: Given a policy π defined onM, we can define a policy π↑ onM:

π↑(a|s) = π(a|f(s))
|{a ∈ g−1

s (a)}|
, ∀s ∈ S, a ∈ g−1

s (a)

g−1
s (a) is the pre-image of a under gs.

▶ We can learn the optimal policy π∗ in the abstract MDPM and lift it to obtain the
optimal policy in the actual MDPM!
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PG Methods in the Presence of Symmetries

Value Equivalence Property

▶ But, for policy optimization we need to evaluate the policy!

Theorem (Value Equivalence)

If h = (f, gs) : M → M, then any two corresponding policies π↑ = lift(π) have equivalent
values:

Vπ↑
(s) = Vπ(f(s)) ∀s ∈ S, Qπ↑

(s, a) = Qπ(f(s), gs(a)) ∀s ∈ S, a ∈ A

▶ This enables the use of MDP homomorphisms for policy evaluation and policy
optimization.

11/44



PG Methods in the Presence of Symmetries

Value Equivalence Property

▶ But, for policy optimization we need to evaluate the policy!

Theorem (Value Equivalence)

If h = (f, gs) : M → M, then any two corresponding policies π↑ = lift(π) have equivalent
values:

Vπ↑
(s) = Vπ(f(s)) ∀s ∈ S, Qπ↑

(s, a) = Qπ(f(s), gs(a)) ∀s ∈ S, a ∈ A

▶ This enables the use of MDP homomorphisms for policy evaluation and policy
optimization.

11/44



PG Methods in the Presence of Symmetries

Value Equivalence Property

▶ But, for policy optimization we need to evaluate the policy!

Theorem (Value Equivalence)

If h = (f, gs) : M → M, then any two corresponding policies π↑ = lift(π) have equivalent
values:

Vπ↑
(s) = Vπ(f(s)) ∀s ∈ S, Qπ↑

(s, a) = Qπ(f(s), gs(a)) ∀s ∈ S, a ∈ A

▶ This enables the use of MDP homomorphisms for policy evaluation and policy
optimization.

11/44



PG Methods in the Presence of Symmetries

Continuous MDP Homomorphisms
Definition (Continuous MDP)
A continuous Markov decision process (MDP) is a 6-tuple:

M = (S,Σ,A, ∀a ∈ A τa : S × Σ → [0, 1],R : S ×A → R, γ)

where Σ is a σ-algebra on S.

Definition (Continuous MDP Homomorphism)
A continuous MDP homomorphism is a map h = (f, gs) : M → M where f : S → S and for every
s in S, gs : A → A are measurable, surjective maps such that the following hold:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A
Equivariance of transitions: τ gs(a)(B|f(s)) = τa(f−1(B)|s) ∀ s ∈ S, a ∈ A,B ∈ Σ
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PG Methods in the Presence of Symmetries

Optimal Value Equivalence

Theorem (Optimal Value Equivalence)

If h = (f, gs) : M → M, then:

V∗(s) = V∗
(f(s)) ∀s ∈ S, Q∗(s, a) = Q∗

(f(s), gs(a)) ∀(s, a) ∈ S ×A

Proof sketch: Induction on the sequence of optimal values. We also use the change of vari-
able formula of the pushforward measure of τa(·|s) with respect to f to change the integra-
tion space from S to S.
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PG Methods in the Presence of Symmetries

Policy Lifting with Continuous MDP Homomorphisms
▶ We need a policy lifting procedure, but this is harder to define in the continuous case.
▶ For now, let’s make the following two simplifying assumptions:

Assumption (Deterministic Policies)

We assume the policy is deterministic. The lifting becomes selecting one representative for
the preimage g−1

s
(
π(f(s))

)
.

Assumption (Bijective gs)

We assume gs is a bijection.

▶ Therefore, the lifted policy is uniquely defined as:

π↑(s)=g−1
s

(
π(f(s))

)
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PG Methods in the Presence of Symmetries

Policy Lifting with Continuous MDP Homomorphisms

▶ How is policy lifting defined for general policies π̄ : S̄ → Dist(Ā)?

▶ The lifted policy needs to satisfy π↑(g−1
s (β)|s) = π(β|f(s)) for every (Borel set)

β ⊂ A, s ∈ S.
▶ Proved that π↑ exists, but the proof is non-constructive and the lifting procedure is

computationally challenging.
▶ With the above definition, we obtain the Value Equivalence result in the continuous

case!
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PG Methods in the Presence of Symmetries

Value Equivalence for General Policies

Theorem (Value Equivalence for General Policies)

If h = (f, gs) : M → M, then for any policy π : S → Dist(A), its lifted policy
π↑ : S → Dist(A) satisfies

Vπ↑
(s) = Vπ(f(s)) ∀s ∈ S, Qπ↑

(s, a) = Qπ(f(s), gs(a)) ∀(s, a) ∈ S ×A

Proof sketch: Induction on the sequence of value functions. We also use the change of vari-
able formula of the pushforwardmeasure of τa(·|s)with respect to f to change the integration
space from S to S, and the pushforward measure of π↑(·|s)with respect to gs to change the
integration space fromA toA.
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PG Methods in the Presence of Symmetries

Reminder: Deterministic Policy Gradient (DPG)

▶ Performance measure: J(θ) = Eπ[Vπ(s)].

▶ Deterministic policy gradient (DPG) theorem [Silver et al., 2014]:

∇θJ(πθ) =
∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)
∣∣
a=πθ(s)

ds

where ρπθ(s) = limt→∞ γtP(st = s|s0, a0:t ∼ πθ) is the discounted stationary
distribution of states under πθ.

▶ Backbone of DDPG, TD3, DrQ-v2, etc.

17/44



PG Methods in the Presence of Symmetries

Reminder: Deterministic Policy Gradient (DPG)

▶ Performance measure: J(θ) = Eπ[Vπ(s)].
▶ Deterministic policy gradient (DPG) theorem [Silver et al., 2014]:

∇θJ(πθ) =
∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)
∣∣
a=πθ(s)

ds

where ρπθ(s) = limt→∞ γtP(st = s|s0, a0:t ∼ πθ) is the discounted stationary
distribution of states under πθ.

▶ Backbone of DDPG, TD3, DrQ-v2, etc.

17/44



PG Methods in the Presence of Symmetries

Reminder: Deterministic Policy Gradient (DPG)

▶ Performance measure: J(θ) = Eπ[Vπ(s)].
▶ Deterministic policy gradient (DPG) theorem [Silver et al., 2014]:

∇θJ(πθ) =
∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)
∣∣
a=πθ(s)

ds

where ρπθ(s) = limt→∞ γtP(st = s|s0, a0:t ∼ πθ) is the discounted stationary
distribution of states under πθ.

▶ Backbone of DDPG, TD3, DrQ-v2, etc.

17/44



PG Methods in the Presence of Symmetries

Deterministic Homomorphic Policy Gradient (HPG)

▶ Goal: To derive a policy gradient estimator using samples obtained from the abstract
MDPM.

Theorem (Equivalence of Deterministic Policy Gradients)
If h = (f, gs) : M → M, and π↑

θ : S → A is the lifted deterministic policy corresponding to the
abstract deterministic policy πθ : S → A. Then:

∇aQπ↑
θ (s, a)

∣∣∣
a=π↑

θ (s)
∇θπ

↑
θ(s) = ∇aQπθ (s, a)

∣∣∣
a=πθ(s)

∇θπθ(s).

Proof sketch: We assume gs is a bijection and use the chain rule and the inverse function
theorem on manifolds.
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PG Methods in the Presence of Symmetries

Deterministic Homomorphic Policy Gradient (HPG)

▶ Can we just plug the previous result in DPG?

∇θJ(πθ) =
∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)
∣∣
a=πθ(s)

ds

▶ No, because the integration and stationary state distribution are still on S!
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PG Methods in the Presence of Symmetries

Deterministic Homomorphic Policy Gradient (HPG)

Theorem (Deterministic Homomorphic Policy Gradient Theorem)
If h = (f, gs) : M → M, and πθ : S → A is a deterministic abstract policy defined onM. Then
the gradient of the performance measure J(θ), defined on the actual MDPM, w.r.t. θ is:

∇θJ(θ) =
∫
s∈S

ρπθ (s)∇aQπθ (s, a)
∣∣∣
a=πθ(s)

∇θπθ(s)ds.

where ρπθ (s) is the discounted state distribution ofM following πθ(s).

Proof sketch: We use the previous theorem and the change of variable formula of the push-
forward measure of τa(·|s) with respect to f to change the integration space from S to S.
▶ We can use the Deterministic HPG of the abstract MDP as an additional gradient

estimator for the actual MDP!
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PG Methods in the Presence of Symmetries

Reminder: Stochastic Policy Gradient (PG)

▶ Performance measure: J(θ) = Eπ[Vπ(s)].

▶ Stochastic policy gradient (PG) theorem [Sutton et al., 1999]:

∇θJ(πθ) =
∫
s∈S

ρπθ(s)
∫
a∈A

Qπθ(s, a)∇θπθ(a|s)dsda

where ρπθ(s) = limt→∞ γtP(st = s|s0, a0:t ∼ πθ) is the discounted stationary
distribution of states under πθ.

▶ Backbone of PPO, TRPO, SAC, etc.
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PG Methods in the Presence of Symmetries

Stochastic Homomorphic Policy Gradient (HPG)
Theorem (Stochastic Homomorphic Policy Gradient Theorem)
If h = (f, gs) : M → M, and π : S → Dist(A) is a stochastic abstract policy defined onM.
Then the gradient of the performance measure J(θ), defined on the actual MDPM, w.r.t. θ is:

∇θJ(θ) =
∫
s∈S

ρπθ (s)
∫
a∈A

Qπθ (s, a)∇θπθ(a|s)dsda.

where ρπθ (s) is the discounted state distribution ofM following πθ(a|s).

Proof sketch: We use the definition of the general policy lifting and the change of variable
formula of the pushforward measure of τa(·|s) with respect to f to change the integration
space from S to S.
▶ We can use the Stochastic HPG of the abstract MDP as an additional gradient

estimator for the actual MDP!
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PG Methods in the Presence of Symmetries

Homomorphic Actor-Critic Algorithms

Policy Lifting
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PG Methods in the Presence of Symmetries

Homomorphic Actor-Critic Algorithms
▶ Deep Homomorphic Policy Gradient (DHPG)

▶ The homomorphism map h = (f, gs), reward function R(s), and stochastic transition
dynamics τ(·|s, a) are parameterized by neural networks.

▶ The actual policy π↑(s) is parameterized and the abstract policy is obtained by the
inverse of the policy lifting:

a = gs(π↑(s))

▶ Actual critic Qπ↑
(s, a) and abstract critic Qπ

(s, a) are trained using TD error.
▶ Policy is updated by DPG and HPG:

Lactor(θ) ≈ −Es∼B

[
Q
(
s, πθ(s)

)
+ Q

(
f(s), g

(
s, πθ(s)

))]
.
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PG Methods in the Presence of Symmetries

Policy Lifting for Stochastic Policies

Using the change of variable formula of the pushforward measure, we can show that the
conditional expectations of abstract actions under the two policies are equal:

Eπ↑ [gs(a)|s] =
∫
A
gs(a)π↑(da|s) =

∫
Ā
āπ̄(dā|̄s) = Eπ̄[ā|f(s)],

Similarly,
Varπ↑ [gs(a)|s] = Varπ̄[ā|f(s)]
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PG Methods in the Presence of Symmetries

Learning Continuous MDP Homomorphisms

▶ The lax bisimulation metric is used to encode lax bisimilar states closer together in the
abstract space, similar to the bisimulation loss in DBC [Zhang et al., 2020]:

Llax = EB
[
∥f(si)− f(sj)∥1−∥ri− rj∥1−αW2

(
τ(·|f(si), g(si, ai)), τ(·|f(sj), g(sj, aj))

)]
whereW2 is the Wasserstein-2 (Kantorovich) metric.

▶ Invariance of the reward and equivariance of the transition dynamics:

Lh = E(si,ai,s′i ,ri)∼B
[(
f(s′i)− s′i

)2
+
(
ri−R(f(si))

)2]
where s′i∼τ(·|f(si), g(si, ai)).

▶ The final loss for learning continuous MDP homomorphisms is Llax + Lh.
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PG Methods in the Presence of Symmetries

Experimental Results

▶ DeepMind Control Suite, on state and pixel observations.
▶ We report interquartile mean (IQM) and performance profiles aggregated on all tasks

over 10 random seeds [Agarwal et al., 2021].
▶ Baselines: DrQ-v2, DBC, DeepMDP, SAC-AE.
▶ All algorithms have two variations: with and without image augmentation.
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PG Methods in the Presence of Symmetries

Experimental Results: Performance
▶ Q: Does HPG improve policy optimization and representation learning?
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Experimental Results: Performance
▶ Q: Does HPG improve policy optimization and representation learning?
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PG Methods in the Presence of Symmetries

Experimental Results: Qualitative Analysis
▶ Q: What are the qualitative properties of the learned representations and abstract

MDP?
▶ Pendulum swingup as simple task with clear symmetries.

▶ Two state-action pairs are equivalent under θ1=−θ2, θ̇1=−θ̇2, and a1=−a2.

▶ Therefore, abstract actions are expected to satisfy gs1(a1)=gs2(a2) for equivalent
state-action pairs.
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PG Methods in the Presence of Symmetries

Experimental Results: Qualitative Analysis
▶ What are the qualitative properties of the learned representations and abstract MDP?

Actual optimal policy a∗ = π↑∗(s)

Abstract optimal policy a∗=gs(a∗)=π∗(s)

▶ The abstract optimal policy is symmetric and gs1(a1)=gs2(a2) for equivalent
state-action pairs.
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PG Methods in the Presence of Symmetries

Experimental Results: Recovering the Minimal MDP
▶ Q: Can DHPG learn and recover the minimal MDP image from raw pixel observations?
▶ Theoretically, MDP homomorphisms can represent the minimal MDP image.
▶ We limit the latent space dimensions to the dimension of the real system.
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PG Methods in the Presence of Symmetries

Additional Environments: Continuous Symmetries

▶ Rotate Suite: reach a goal orientation by rotating the object
▶ 3D Mountain Car: translational symmetry along y-axis
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PG Methods in the Presence of Symmetries

Additional Environments: Rotate Suite
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Additional Environments: Rotate Suite
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Additional Environments: 3D Mountain Car
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Conclusion

▶ Defined continuous MDP homomorphisms for state-action abstraction in continuous
control problems.

▶ Derived the homomorphic policy gradient theorem.
▶ Demonstrated the potential of MDP homomorphisms in learning structured

representations that can preserve values and represent the minimal MDP image.

▶ Looking ahead: new methods for learning state abstractions in more complex domains
▶ Better theoretical guarantees (convergence rates?)
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Thank You!

Extended Journal Paper!
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Policy Lifting for Stochastic Policies

Using the change of variable formula of the pushforward measure, we can show that the
conditional expectations of abstract actions under the two policies are equal:

Eπ↑ [gs(a)|s] =
∫
A
gs(a)π↑(da|s) =

∫
Ā
āπ̄(dā|̄s) = Eπ̄[ā|f(s)],

Similarly,
Varπ↑ [gs(a)|s] = Varπ̄[ā|f(s)]
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Background: MDP Homomorphisms
Definition (MDP Homomorphism)

AnMDP homomorphism h=(f, gs) :M→M is a surjective map from a finite MDP
M=(S,A,R, τa, γ) onto an abstract finite MDPM=(S,A,R, τa, γ) where f :S→S and
gs :A→A are surjective maps satisfying the following equations:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A
Equivariance of transitions: τgs(a)(f(s

′)|f(s)) =
∑

s′′∈[s′]Bh|S

τa(s′′|s) ∀s ∈ S, a ∈ A

▶ Bh is the partition of S induced by the equivalence relation h.
▶ Bh|S is the projection of Bh onto S.
▶ [s′]Bh|S denotes the block of Bh|S to which s′ belongs.

39/44



PG Methods in the Presence of Symmetries

Background: MDP Homomorphisms
Definition (MDP Homomorphism)

AnMDP homomorphism h=(f, gs) :M→M is a surjective map from a finite MDP
M=(S,A,R, τa, γ) onto an abstract finite MDPM=(S,A,R, τa, γ) where f :S→S and
gs :A→A are surjective maps satisfying the following equations:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A

Equivariance of transitions: τgs(a)(f(s
′)|f(s)) =

∑
s′′∈[s′]Bh|S

τa(s′′|s) ∀s ∈ S, a ∈ A

▶ Bh is the partition of S induced by the equivalence relation h.
▶ Bh|S is the projection of Bh onto S.
▶ [s′]Bh|S denotes the block of Bh|S to which s′ belongs.

39/44



PG Methods in the Presence of Symmetries

Background: MDP Homomorphisms
Definition (MDP Homomorphism)

AnMDP homomorphism h=(f, gs) :M→M is a surjective map from a finite MDP
M=(S,A,R, τa, γ) onto an abstract finite MDPM=(S,A,R, τa, γ) where f :S→S and
gs :A→A are surjective maps satisfying the following equations:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A
Equivariance of transitions: τgs(a)(f(s

′)|f(s)) =
∑

s′′∈[s′]Bh|S

τa(s′′|s) ∀s ∈ S, a ∈ A

▶ Bh is the partition of S induced by the equivalence relation h.
▶ Bh|S is the projection of Bh onto S.
▶ [s′]Bh|S denotes the block of Bh|S to which s′ belongs.

39/44



PG Methods in the Presence of Symmetries

Background: Bisimulation and Lax Bisimulation
▶ Bisimulation captures indistinguishability of reward and transitions for all a ∈ A.

▶ The Bisimulation metricmeasures how far apart two state pairs are:

dbisim
(
si, sj

)
= max

a∈A
cr
∣∣R(si, a)− R(sj, a)

∣∣+ ctK
(
τa(·|si), τa(·|sj)

)
K is the Kantorovich (Wasserstein) metric, measuring the distance between the two
transition probabilities.

▶ Lax bisimulation relaxes the requirement on action matching. It is precisely the same
relation as an MDP homomorphism [Taylor et al., 2008].

▶ The Lax bisimulation metricmeasures the lax bisimilarity of state-action pairs:

dlax
(
(si, ai), (sj, aj)

)
= cr

∣∣R(si, ai)− R(sj, aj)
∣∣+ ctK

(
τai(·|si), τaj(·|sj)

)
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Background: Surjection, Injection, and Bijection

Figure: Image from Wikipedia.
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Background: MDP Homomorphisms
An MDP Homomorphism h represented by Commutative Diagrams [Ravindran and Barto,
2001]:

Figure: Image from Ravindran and Barto [2001].
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Background: σ-Algebra

Definition (σ-algebra)

Given a set X, a σ-algebra on X is a family Σ of subsets of X such that 1) X ∈ Σ, 2) A ∈ Σ
implies Ac ∈ Σ (closure under complements), and 3) if (Ai)i∈N satisfies Ai ∈ Σ for all i ∈ N,
then ∪i∈NAi ∈ Σ (closure under countable union). The tuple (X,Σ) is a measurable space.

The σ-algebra of a space specifies the sets in which a measure is defined.
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Background: PushforwardMeasure andChange of Vari-
ables
Definition (Pushforward measure)
Let (X1,Σ1) and (X2,Σ2) be two measurable spaces, f : X1 → X2 a measurable map and
µ : Σ1 → [0,∞] a measure on X1. Then the pushforward measure of µ with respect to f, denoted
f∗(µ) : Σ2 → [0,∞] is defined as:

(f∗(µ))(B) = µ(f−1(B)) ∀ B ∈ Σ2.

Theorem (Change of variables)
A measurable function g on X2 is integrable with respect to f∗(µ) if and only if the function g ◦ f is
integrable with respect to µ, in which case the integrals are equal:∫

X2

gd(f∗(µ)) =
∫
X1

g ◦ fdµ.
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Policy Lifting for Stochastic Policies

Using the change of variable formula of the pushforward measure, we can show that the
conditional expectations of abstract actions under the two policies are equal:

Eπ↑ [gs(a)|s] =
∫
A
gs(a)π↑(da|s) =

∫
Ā
āπ̄(dā|̄s) = Eπ̄[ā|f(s)],

Similarly,
Varπ↑ [gs(a)|s] = Varπ̄[ā|f(s)]
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