Evaluating Optimizers for Language Model
Training: From SGD to Adam (and Beyond?)

Rosie Zhao

UIUC ML Seminar - September 27, 2024

15 Harvard John A. Paulson

W School of Engineering
and Applied Sciences



Models are getting bigger and pretraining is expensive!
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‘ Elon Musk & B @elonmusk - 20h

Nice work by @xAl team, @X team, @Nvidia & supporting companies
getting Memphis Supercluster training started at ~4:20am local time.

With 100k liquid-cooled H100s on a single RDMA fabric, it’s the most
powerful Al training cluster in the world!

Q 3.5k 71K @ 60K iht 13Mm &
Elon Musk & B m
@elonmusk

This is a significant advantage in training the world’s most powerful Al by

every metric by December this year

4:30 PM - Jul 22,2024 - 2M Views

The Extreme Cost
Of Training Al Models

Estimated cost of training selected Al models
(in million U.S. dollars), by different calculation models
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https://www.labellerr.com/blog/unveiling-the-contrasts-developing-small-scale-and-large-scale-language-models/
https://www.nextplatform.com/2024/07/30/so-who-is-building-that-100000-gpu-cluster-for-xai/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/

What research matters?

7

% Even industry labs can really only commit to one training run
> Hyperparameter transfer across scales
> Mitigating training instabilities at scale

% There’s a growing need for more efficient algorithms

> Distributed training

> More efficient optimizers

Scaling Exponents Across Parameterizations and
Small-scale proxies for large-scale Optimizers

Transformer training instabilities Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman
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Lee, Justin Gilmer, Simon Kornblith Ahmed Khaled, Ashok Cutkosky s the precise adjustment of many algorithmic and architectural
’ L izat Aoatimi L In this work, we
Teams that h —_p " . bdules that do not require specification of the nfinite-Width Neural pstigating a key
training insta Adam-mini: Use Fewer Learning Rates To Gain More T ae greatly ub-pectadmed b [6ailng Bte parameters and data
the same hyp| Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi- | T. We propose an approach that avoids the need ptions and a broader

instabilities al Quan Luo, Ruoyu Sun n includes tens of

bschewing the use of schedules entirely, while

reproduce th hree optimizers, four
P We propose Adam-mini, an optimizer that achieves on-par or better performance rt performance compared to schedules across a leep neural network's behavior under re than a dozen
ways to reprd than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by anging from convex problems to large-scale i ; f i
| i 3 : § " < . hplified and predictable (e.g. given by the arameters. We find
scales. First, cutting down the learning rate resources in Adam (i.e., 1/4/). We find that > 90% of Dur Schedule-Free approach introduces no it i thized fately i
. . . . L it is parametrized appropriately (e.g. the
these learning rates in v could be harmlessly removed if we (1) carefully partition the ers over standard optimizers with momentum. ﬁ h b ppd pd dyNTI?
parameters into blocks following our proposed principle on Hessian structure; (2) e show that the standard an
assign a single but good learning rate to each parameter block. We further find that, parametrizations of a neural network do not admit infinite-width limits that
for each of these parameter blocks, there exists a single high-quality learning rate can learn features, which is crucial for pretraining and transfer learning such
that can outperform Adam, provided that sufficient resources are available to search as with BERT. We propose simple modifications to the standard

it out. We then provide one cost-effective way to find good learning rates and
propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better
than AdamW on various language models sized from 125M to 7B for pre-training,

parametrization to allow for feature learning in the limit. Using the *Tensor
Programs* technique, we derive explicit formulas for such limits. On
Word2Vec and few-shot learning on Omniglot via MAML, two canonical tasks
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Deconstructing What Makes
a Good Optimizer for
Language Models

Zhao*, Morwani*, Brandfonbrener*, Vyas*, Kakade.

Harvard John A. Paulson

W School of Engineering
and Applied Sciences



Which optimizers are best?

e We perform a comprehensive sweep for training autoregressive
language models across different optimizers, hyperparameters,
architectures, and scale

e Both optimal performance and learning rate stability are important

e We focus on optimizers with diagonal preconditioning: Adam,
Adafactor®, Lion, SignSGD with momentum

e We perform one-dimensional sweeps, which doesn’t account for 2D
interactions

Learning rate

C—

Momentum B Warmup, etc...

8
B
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Optimizers Review

e Attimet, given weight matrix Wt - Rmxn, gradient Gt c R™x"
with vectorized form ¢, = vec(Gy) € R™"

Adagrad: second order method maintaining preconditioner H

H = H, 1+ qg; w =w_1—nH, g

Adam: maintains EMA of gradients and elementwise gradients squared

M
Wi Wiy — U\/—Vi
¢

Adafactor*: maintains rank-1 approximation of elementwise gradients squared
M,
‘/;/

Wt <— Wt—l — 1

Others of interest: signSGD with momentum
3 | Harvard John A. Paulson o o
W School of Engineering (Slgnum), Llon, etc... 6
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Other Training Details

e We study two architectures:
o  With QK-LayerNorm and z-loss (“standard”) and without
e We train decoder-only language models on C4 tokenized with the T5
tokenizer, at multiple scales (150m, 300m, 600m, 1.2b)
e Other standard training choices: batch size of 256, sequence length of
512, training with “chinchilla optimal" number of tokens (Y20x)...

x| Harvard John A. Paulson Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
W School of Engineering

and Applied Sciences Brandfonbrener*, Vyas*, Kakade. Submitted.



Initial Sweep Results

150m (standard)
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Initial Sweep Results

150m (no QK norm or z-loss) 300m (no QK norm or z-loss)
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This holds
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Takeaway: besides SGD, performance and stability to learning
rate are comparable!
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Other Hyperparameter Sweeps - Momentum

150m (standard) 150m (no QK norm or z-loss) 300m (standard)
3.40 3.40 3.20
3.35 3.35 3.15
% 3.30 g 3.30 é 3.10
g 3.25 é 3.25 é 3.05
E 3.20 E 3.20 § 3.00
E 3.15 E 3.15 g 2.95
3.10 3.10 2.90
3.05 3.05 2.85
0.99 0.98 0.95 0.9 0.8 0.5 0.0 0.99 0.98 0.95 0.9 0.8 0.5 0.0 0.99 0.98 0.95 0.9 0.8 0.5 0.0
beta_1 beta_1 beta_1
SGD Adam Adafactor Lion Signum
e Most sensitive hyperparameter other than learning rate
e SGD very sensitive, Adam and Adafactor are surprisingly robust, and
Lion/Signum get worse at low momentum values
Takeaway: besides SGD, performance and stability to learning
rate are comparable at standard momentum values.
CEr) | Harvard John A.Paulson Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
@ ::g%%lp?ifegnsgégii;"g Brandfonbrener*, Vyas*, Kakade. Submitted. 12



Other Hyperparameter Sweeps
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Takeaway: besides SGD, very little performance gain with respect
to other parameters. Prioritize tuning learning rate and

momentum.
oy | JohnA Paulson Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
W School of Engineering Brandfonb * \lvas* Kakade. Submitted
and Applied Sciences ranaronbrener, Vyas", Kakade. submitted. 13



sighSGD

e Adam performs similarly to Signum, even at scalel
e Result from Balles and Hennig (2018) shows that Adam performs
variance-adjusted signSGD - if B, = 3, they should match more

150m (standard) 150m (no QK norm or z-loss) 300m (standard)
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Takeaway: Adam behaves similarly to Signum for 8, = 3., with standard
settings being similar to this (3,= 0.9, 3, = 0.95)
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Digging Deeper - Use anything but SGD?

e All diagonal preconditioning optimizers are similar! But why?

e We want to understand the role of preconditioning for performance
and stability

e To what extent is this adaptivity needed for different
parameters of the network? Can SGD achieve similar
benefits with minimal modifications?

CEr) | Harvard John A.Paulson Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,

School of Engineering * N .
W and Applied Sciences Brandfonbrener*, Vyas*, Kakade. Submitted. ']4



Adalayer

e “Layer-wise” version of Adam for ease of study
e Stores a single scalar which is the average of the second moment
matrix for a given “block” (eg. a layer)

3.7

s
o

Need to perform a correction
to last layer: each set of
weights feeding into a logit is
its own block

ol
Ul
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- Adalayer Adam
Adalayer* (last layer correction) SGD
CEr) | Harvard John A.Paulson Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
@ School of Engineering Brandfonb * \lvas* Kakade. Submitted
and Applied Sciences randfonbrener*, Vyas*, Kakade. Submitted. 15



Adalayer Effective Learning Rate Quantiles

yr

e Given layer |, we report effective learning rates ,/yl + . over training

Effective learning rate
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e Learning rates across logits vary across multiple orders of

Harvard John A. Paulson
School of Engineering
and Applied Sciences
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Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.
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SGD + Adalayer

e Quantiles suggest that all layers but the last layer needs an
iteration-dependent scalar correction to their learning rate - can they
actually be trained with SGD?
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Adam — Adalayer* (LL, 3.16e-3) + SGD (LN + Matrix) Adam — Adalayer* (LL + LN, 3.16e-3) + SGD (Matrix)
Adalayer on just the last layer is not ... but Adalayer on just the last layer
sufficient... and LayerNorm parameters is!
CEr) | Harvard John A.Paulson Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
@ School of Engineering Brandfonb * \lvas* Kakade. Submitted
and Applied Sciences randfonbrener*, Vyas*, Kakade. Submitted. ']8



SGD + Adalayer

e Quantiles suggest that all layers but the last layer needs an
iteration-dependent scalar correction to their learning rate - can they
actually be trained with SGD?
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g 295 This holds even at
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@ a:d%%p?iednsgéir;i;"g Brandfonbrener*, Vyas*, Kakade. Submitted. ']9



Frozen Adalayer

e We also fix Adalayer learning rate ratios from initialization, with the
exception of last layer and LayerNorm parameters
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Summary and Takeaways

Optimizers with diagonal preconditioners are roughly equivalent
both in terms of optimal performance and hyperparameter stability
It seems that most of the benefits of adaptive optimizers arise from
their treatment of the last layer and LayerNorm parameters

o  Why? Further investigations into LayerNorm?

For practitioners: tune learning rate and momentum, other
hyperparameters are stable around these optimal values
Optimizer choice might not be the optimal point of intervention for

increasing efficiency? At least for diagonal preconditioning optimizers...

Harvard John A. Paulson
School of Engineering
and Applied Sciences
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SOAP: Improving and Stabilizing
Shampoo with Adam

Vyas, Morwani, Zhao, Shapira, Brandfonbrener, Janson, Kakade.

Harvard John A. Paulson
School of Engineering
and Applied Sciences
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What'’s next after diagonal preconditioners?

e As we just saw, most diagonal preconditioner optimizers perform
similarly to AdamW — need to explore non-diagonal preconditioning
methods

e Second-order optimization methods: Adagrad, Newton’s method
require storing and inverting matrices of size IPI x I[Pl (P =#
parameters)

e Hessian-free and Hessian estimation methods (eg. KFAC [Martens &

Grosse, 2015], Shampoo [Gupta et al., 2018] and follow up
enhancements)

80058 Harvard John A. Paulson
W School of Engineering
and Applied Sciences 23



Shampoo

e For a given weight matrix ¥V € R"™*"™, maintain two preconditioners
Lt c RMXm Rt c R™Xn

e Update rule with learning rate n as follows:

Lit= Lia+GGl; R Roa+GGy Wy Wiy — L "GiR

e Previous work (collaborators): Shampoo”2 (i.e. exponent -2 instead of
-Y4) is better than Shampoo in practice, and is provably close to the
optimal Kronecker product approximation of the Adagrad
preconditioner.

August 1, 2024 News

Announcing the results of the

. . inaugural AlgoPerf: Training
Distributed Sham poo Algorithms benchmark

implementation won competition
AI g o pe rf be n Ch m a rk! Non-diagonal preconditioning has dethroned Nesterov Adam,

and our self-tuning track has crowned a new state-of-the-
art for completely hyperparameter-free training algorithms

80058 Harvard John A. Paulson
W School of Engineering
and Applied Sciences 24



An equivalence between Shampoo”2 and Adafactor

Algorithm 1 Single step of idealized Shampoo with power 1/2.

oo SR “|dealized Shampoo”:
it won, (W)
L « E|GpGE) {Where the expectation is over a random batch B.} hlghllghted Changes in red

R« I'l‘:n [GT,GB]
H « L® R/Trace(L)
W, & W,_, —nH-12G, = W,_, — nL~-'/2G,R~ 1/2 /Trace(L)~1/2

9‘5-!‘.‘.":’.‘.'*.’?"

Algorithm 2 Single step of idealized Adafactor in Shampoo’s eigenspace.
Sample batch B,.

1: 13 4 2

R Ol Tntal |dealized Adafactor”: Get rank-1
3: L« igG . . .

& R« EslGLGp) estimates in rotated space given
5: QL + Eigenvectors(L) .

U & Bloumactorst by Q matrices and rotate them

LGy 7t

8: {ldcalizcla version of code for Adafactor taking G to be the gradient} back to update We|g hts

©

G5, + QTGp,Qr
A =Eg[G'y © G)g)1,, where Gy = QTG 5Qr
: c = 113,,[(;’,, ® Gly)

._
e

—
—

- 1 (St Sriten] Theorem: These two algorithms
13: G} « —‘1: {Elementwise division and square root} . |

14: G + QT G/ Qy {Projecting back to original space} are eq uiva I ent!

15: W, « H, 1 — Gy’

EE ;Iaizvarld #?Eh"{\-PaU.'SO” SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
* a:digp?iednsgc'gﬁi;ng Brandfonbrener, Janson, Kakade. Submitted. 25



Insights from the idealized algorithms

e In practice, Shampoo and Adafactor in Shampoo’s eigenbasis are NOT

equivalent and differ:
o When using dataset averages vs running averages
o When the eigenvector decomposition of L and R is not computed

at every step
e Key insight: eigenvector decomposition is expensive, but updating the
second moment estimates in the rotated space is inexpensive!
e Why not opt for Adam instead of Adafactor? (or any other diagonal

preconditioner?)

15 Harvard John A. Paulson

W School of Engineering
and Applied Sciences



SOAP!

e ShampoO with Adam in the Preconditioner’s eigenbasis

e Part of a broader space of second order algorithms where first order
methods are run in the space provided by a second order method’s
preconditioning

e Much fewer hyperparameters compared to Shampoo, and adds one
additional hyperparameter to Adam - preconditioning frequency

CEr) | Harvard John A.Paulson SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
W School of Engineering

and Applied Sciences Brandfonbrener, Janson, Kakade. Submitted. 27



SOAP algorithm

Algorithm 3 Single step of SOAP for a m x n layer. Per layer, we maintain four matrices: L € R™*™, R € R**"
and V, M € R™*™. For simplicity we ignore the initialization and other boundary effects such as bias correction.
Hyperparameters: Learning rate 7, betas = (81, 82), epsilon ¢, and preconditioning frequency f.

An implementation of SOAP is available at https://github.com/nikhilvyas/SOAP.

Sample batch B;.

G € RMX™ —Vw¢3t (Wt)

G+ QYTGQr

M+ /M + (1 —,31)G

M’ + Q%:MQR

{Now we “run” Adam on G’}

V + B2V + (1 — B2)(G’ ® G’) {Elementwise multiplication }

N' \/AV/I,JF {Elementwise division and square root}

9: {Now that we have preconditioned by Adam in the rotated space, we go back to the original space.}
10: N «+ QLN'Q%

11: W« W —nN

12: {End of gradient step, we now update L and R and possibly also @1, and Q. }

13: L + ,BQL + (1 — ,Bz)GGT

14: R+ BaR + (1 = 62)GTG

15: if t % f == 0 then

16: @ < Eigenvectors(L,Qr)

17: Qg < Eigenvectors(R,QRr)

go T Ll R

18: end if
EE ;Iaizvarld #féh"/_\-PaU.'SO” SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
W a:digp?iednsgc'gﬁi;ng Brandfonbrener, Janson, Kakade. Submitted. 29



Experiments

660m, 2m batch size 660m, 2m batch size

Preconditioning Frequency=10 Preconditioning Frequency=10 360m, 2m batch size
3.2 3.2
3.1 3.1
3.0 3.0
7
wn o
%] -
3 i
c 2.9 2.9 @
(o] —
= e
1=
2.8 2.8
2.7 : ey 27 : e
I | By 1 I .
I I 1 I
1 I 1 I 2.82 k-
2.6 ! 1 2.6 1 I
1600 3200 4800 6400 0.25 0.5 0.75 1.0 1 3 10 32 100
Training Steps Wall Time (scaled by AdamW) Preconditioning Frequency
— AdamW —— Shampoo - SOAP SOAP (shorter LR schedule)

e 40% reduction in iterations and 35% reduction in wall clock time
with respect to Adam, and 20% reduction to both with respect to
Shampoo

e More robust to higher preconditioning frequency

rryy | Harvard John A.Paulson SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,

W ::gr:pﬁgnsgc'gﬁz;ng Brandfonbrener, Janson, Kakade. Submitted. 30



Summary and Conclusions

More results in paper: throughput, smaller batch sizes, efficiency
improvements

SOAP outperforms both AdamW and Shampoo on language modeling
tasks

Need to explore further improvements (lower precision, distributed
implementation) and using SOAP on other domains (try it!)

Second order methods potentially have further untapped potential -
diagonal preconditioning optimizers are all similar, and second order
methods like SOAP/Shampoo seem to be better!

Harvard John A. Paulson
School of Engineering
and Applied Sciences
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Thank youl!

Theory on Shampoo
(collaborators)

Deconstructing Optimizers

Harvard John A. Paulson
School of Engineering
and Applied Sciences
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