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Models are getting bigger and pretraining is expensive!
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Llama 3.1 405B FLOPs 
= 1021 x AlexNet FLOPs

Image credit: [1], [2], [3]

https://www.labellerr.com/blog/unveiling-the-contrasts-developing-small-scale-and-large-scale-language-models/
https://www.nextplatform.com/2024/07/30/so-who-is-building-that-100000-gpu-cluster-for-xai/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/


❖ Even industry labs can really only commit to one training run 
➢ Hyperparameter transfer across scales
➢ Mitigating training instabilities at scale

❖ There’s a growing need for more efficient algorithms
➢ Distributed training
➢ More efficient optimizers

What research matters?
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Deconstructing What Makes 
a Good Optimizer for 
Language Models
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Zhao*, Morwani*, Brandfonbrener*, Vyas*, Kakade.



● We perform a comprehensive sweep for training autoregressive 
language models across different optimizers, hyperparameters, 
architectures, and scale

● Both optimal performance and learning rate stability are important
● We focus on optimizers with diagonal preconditioning: Adam, 

Adafactor*, Lion, SignSGD with momentum
● We perform one-dimensional sweeps, which doesn’t account for 2D 

interactions

Which optimizers are best?
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Learning rate

Momentum β2
Warmup, etc…

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● At time t, given weight matrix , gradient  
with vectorized form  

Optimizers Review
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Adagrad: second order method maintaining preconditioner H 

Adam: maintains EMA of gradients and elementwise gradients squared

Adafactor*: maintains rank-1 approximation of elementwise gradients squared

Others of interest: signSGD with momentum 
(Signum), Lion, etc…



● We study two architectures:
○ With QK-LayerNorm and z-loss (“standard”) and without 

● We train decoder-only language models on C4 tokenized with the T5 
tokenizer, at multiple scales (150m, 300m, 600m, 1.2b)

● Other standard training choices: batch size of 256,  sequence length of 
512, training with “chinchilla optimal'' number of tokens (~20x)...

Other Training Details
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Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



Initial Sweep Results
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*SGD is shown here 
with 0.98 momentum

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



Initial Sweep Results

10

*SGD is shown here 
with 0.98 momentum

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



This holds across multiple scales…
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Takeaway: besides SGD, performance and stability to learning 
rate are comparable!

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



Other Hyperparameter Sweeps - Momentum
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● Most sensitive hyperparameter other than learning rate
● SGD very sensitive, Adam and Adafactor are surprisingly robust, and 

Lion/Signum get worse at low momentum values

Takeaway: besides SGD, performance and stability to learning 
rate are comparable at standard momentum values.

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



Other Hyperparameter Sweeps 
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Takeaway: besides SGD, very little performance gain with respect 
to other parameters. Prioritize tuning learning rate and 
momentum.

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



signSGD

33

● Adam performs similarly to Signum, even at scale!
● Result from Balles and Hennig (2018) shows that Adam performs 

variance-adjusted signSGD - if β1 = β2, they should match more

Takeaway: Adam behaves similarly to Signum for β1 = β2, with standard 
settings being similar to this ( β1 = 0.9, β2 = 0.95)



● All diagonal preconditioning optimizers are similar! But why?
● We want to understand the role of preconditioning for performance 

and stability

● To what extent is this adaptivity needed for different 
parameters of the network? Can SGD achieve similar 
benefits with minimal modifications?

Digging Deeper - Use anything but SGD?
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Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● “Layer-wise” version of Adam for ease of study
● Stores a single scalar which is the average of the second moment 

matrix for a given “block” (eg. a layer)

Adalayer
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Need to perform a correction 
to last layer: each set of 
weights feeding into a logit is 
its own block

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● Given layer l, we report effective learning rates    over training
   

Adalayer Effective Learning Rate Quantiles
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● Learning rates across logits vary across multiple orders of 
magnitude

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● Quantiles suggest that all layers but the last layer needs an 
iteration-dependent scalar correction to their learning rate - can they 
actually be trained with SGD?

SGD + Adalayer
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Adalayer on just the last layer is not 
sufficient…

… but Adalayer on just the last layer 
and LayerNorm parameters is!

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● Quantiles suggest that all layers but the last layer needs an 
iteration-dependent scalar correction to their learning rate - can they 
actually be trained with SGD?

SGD + Adalayer
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Adalayer on just the last layer is not 
sufficient…

… but Adalayer on just the last layer 
and LayerNorm parameters is!

This holds even at 
600m parameters!

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● We also fix Adalayer learning rate ratios from initialization, with the 
exception of last layer and LayerNorm parameters

Frozen Adalayer
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Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*, 
Brandfonbrener*, Vyas*, Kakade. Submitted.



● Optimizers with diagonal preconditioners are roughly equivalent 
both in terms of optimal performance and hyperparameter stability

● It seems that most of the benefits of adaptive optimizers arise from 
their treatment of the last layer and LayerNorm parameters
○ Why? Further investigations into LayerNorm?

● For practitioners: tune learning rate and momentum, other 
hyperparameters are stable around these optimal values

● Optimizer choice might not be the optimal point of intervention for 
increasing efficiency? At least for diagonal preconditioning optimizers…

Summary and Takeaways
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SOAP: Improving and Stabilizing 
Shampoo with Adam
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Vyas, Morwani, Zhao, Shapira, Brandfonbrener, Janson, Kakade.



● As we just saw, most diagonal preconditioner optimizers perform 
similarly to AdamW – need to explore non-diagonal preconditioning 
methods

● Second-order optimization methods: Adagrad, Newton’s method 
require storing and inverting matrices of  size |P| x |P| (P = # 
parameters)

● Hessian-free and Hessian estimation methods (eg. KFAC [Martens & 
Grosse, 2015], Shampoo [Gupta et al., 2018] and follow up 
enhancements)

What’s next after diagonal preconditioners?
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● For a given weight matrix     , maintain two preconditioners      

Shampoo
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Distributed Shampoo 
implementation won 
Algoperf benchmark!

● Update rule with learning rate η as follows:      

● Previous work (collaborators): Shampoo^2 (i.e. exponent -½ instead of 
-¼) is better than Shampoo in practice, and is provably close to the 
optimal Kronecker product approximation of the Adagrad 
preconditioner.



An equivalence between Shampoo^2 and Adafactor
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SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira, 
Brandfonbrener, Janson, Kakade. Submitted.

“Idealized Shampoo”: 
highlighted changes in red

Theorem: These two algorithms 
are equivalent! 

“Idealized Adafactor”: Get rank-1 
estimates in rotated space given 
by Q matrices and rotate them 
back to update weights



● In practice, Shampoo and Adafactor in Shampoo’s eigenbasis are NOT 
equivalent and differ:
○ When using dataset averages vs running averages
○ When the eigenvector decomposition of L and R is not computed 

at every step
● Key insight: eigenvector decomposition is expensive, but updating the 

second moment estimates in the rotated space is inexpensive!
● Why not opt for Adam instead of Adafactor? (or any other diagonal 

preconditioner?)

Insights from the idealized algorithms
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● ShampoO with Adam in the Preconditioner’s eigenbasis
● Part of a broader space of second order algorithms where first order 

methods are run in the space provided by a second order method’s 
preconditioning 

● Much fewer hyperparameters compared to Shampoo, and adds one 
additional hyperparameter to Adam - preconditioning frequency

SOAP! 
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SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira, 
Brandfonbrener, Janson, Kakade. Submitted.



SOAP algorithm
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SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira, 
Brandfonbrener, Janson, Kakade. Submitted.



Experiments
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SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira, 
Brandfonbrener, Janson, Kakade. Submitted.

● 40% reduction in iterations and 35% reduction in wall clock time 
with respect to Adam, and 20% reduction to both with respect to 
Shampoo

● More robust to higher preconditioning frequency



● More results in paper: throughput, smaller batch sizes, efficiency 
improvements

● SOAP outperforms both AdamW and Shampoo on language modeling 
tasks

● Need to explore further improvements (lower precision, distributed 
implementation) and using SOAP on other domains (try it!)

● Second order methods potentially have further untapped potential - 
diagonal preconditioning optimizers are all similar, and second order 
methods like SOAP/Shampoo seem to be better!

Summary and Conclusions
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Thank you!
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Deconstructing Optimizers SOAP Theory on Shampoo 
(collaborators)


