
Rosie Zhao

Evaluating Optimizers for Language Model
Training: From SGD to Adam (and Beyond?)

UIUC ML Seminar - September 27, 2024

Models are getting bigger and pretraining is expensive!

2

Llama 3.1 405B FLOPs
= 1021 x AlexNet FLOPs

Image credit: [1], [2], [3]

https://www.labellerr.com/blog/unveiling-the-contrasts-developing-small-scale-and-large-scale-language-models/
https://www.nextplatform.com/2024/07/30/so-who-is-building-that-100000-gpu-cluster-for-xai/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/

❖ Even industry labs can really only commit to one training run
➢ Hyperparameter transfer across scales
➢ Mitigating training instabilities at scale

❖ There’s a growing need for more efficient algorithms
➢ Distributed training
➢ More efficient optimizers

What research matters?

3

Deconstructing What Makes
a Good Optimizer for
Language Models

4

Zhao*, Morwani*, Brandfonbrener*, Vyas*, Kakade.

● We perform a comprehensive sweep for training autoregressive
language models across different optimizers, hyperparameters,
architectures, and scale

● Both optimal performance and learning rate stability are important
● We focus on optimizers with diagonal preconditioning: Adam,

Adafactor*, Lion, SignSGD with momentum
● We perform one-dimensional sweeps, which doesn’t account for 2D

interactions

Which optimizers are best?

5

Learning rate

Momentum β2
Warmup, etc…

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● At time t, given weight matrix , gradient
with vectorized form

Optimizers Review

6

Adagrad: second order method maintaining preconditioner H

Adam: maintains EMA of gradients and elementwise gradients squared

Adafactor*: maintains rank-1 approximation of elementwise gradients squared

Others of interest: signSGD with momentum
(Signum), Lion, etc…

● We study two architectures:
○ With QK-LayerNorm and z-loss (“standard”) and without

● We train decoder-only language models on C4 tokenized with the T5
tokenizer, at multiple scales (150m, 300m, 600m, 1.2b)

● Other standard training choices: batch size of 256, sequence length of
512, training with “chinchilla optimal'' number of tokens (~20x)...

Other Training Details

7
Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

Initial Sweep Results

9

*SGD is shown here
with 0.98 momentum

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

Initial Sweep Results

10

*SGD is shown here
with 0.98 momentum

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

This holds across multiple scales…

11

Takeaway: besides SGD, performance and stability to learning
rate are comparable!

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

Other Hyperparameter Sweeps - Momentum

12

● Most sensitive hyperparameter other than learning rate
● SGD very sensitive, Adam and Adafactor are surprisingly robust, and

Lion/Signum get worse at low momentum values

Takeaway: besides SGD, performance and stability to learning
rate are comparable at standard momentum values.

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

Other Hyperparameter Sweeps

13

Takeaway: besides SGD, very little performance gain with respect
to other parameters. Prioritize tuning learning rate and
momentum.

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

signSGD

33

● Adam performs similarly to Signum, even at scale!
● Result from Balles and Hennig (2018) shows that Adam performs

variance-adjusted signSGD - if β1 = β2, they should match more

Takeaway: Adam behaves similarly to Signum for β1 = β2, with standard
settings being similar to this (β1 = 0.9, β2 = 0.95)

● All diagonal preconditioning optimizers are similar! But why?
● We want to understand the role of preconditioning for performance

and stability

● To what extent is this adaptivity needed for different
parameters of the network? Can SGD achieve similar
benefits with minimal modifications?

Digging Deeper - Use anything but SGD?

14
Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● “Layer-wise” version of Adam for ease of study
● Stores a single scalar which is the average of the second moment

matrix for a given “block” (eg. a layer)

Adalayer

15

Need to perform a correction
to last layer: each set of
weights feeding into a logit is
its own block

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● Given layer l, we report effective learning rates over training

Adalayer Effective Learning Rate Quantiles

16

● Learning rates across logits vary across multiple orders of
magnitude

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● Quantiles suggest that all layers but the last layer needs an
iteration-dependent scalar correction to their learning rate - can they
actually be trained with SGD?

SGD + Adalayer

18

Adalayer on just the last layer is not
sufficient…

… but Adalayer on just the last layer
and LayerNorm parameters is!

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● Quantiles suggest that all layers but the last layer needs an
iteration-dependent scalar correction to their learning rate - can they
actually be trained with SGD?

SGD + Adalayer

19

Adalayer on just the last layer is not
sufficient…

… but Adalayer on just the last layer
and LayerNorm parameters is!

This holds even at
600m parameters!

Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● We also fix Adalayer learning rate ratios from initialization, with the
exception of last layer and LayerNorm parameters

Frozen Adalayer

20
Deconstructing what makes a good optimizer for language models. Zhao*, Morwani*,
Brandfonbrener*, Vyas*, Kakade. Submitted.

● Optimizers with diagonal preconditioners are roughly equivalent
both in terms of optimal performance and hyperparameter stability

● It seems that most of the benefits of adaptive optimizers arise from
their treatment of the last layer and LayerNorm parameters
○ Why? Further investigations into LayerNorm?

● For practitioners: tune learning rate and momentum, other
hyperparameters are stable around these optimal values

● Optimizer choice might not be the optimal point of intervention for
increasing efficiency? At least for diagonal preconditioning optimizers…

Summary and Takeaways

21

SOAP: Improving and Stabilizing
Shampoo with Adam

22

Vyas, Morwani, Zhao, Shapira, Brandfonbrener, Janson, Kakade.

● As we just saw, most diagonal preconditioner optimizers perform
similarly to AdamW – need to explore non-diagonal preconditioning
methods

● Second-order optimization methods: Adagrad, Newton’s method
require storing and inverting matrices of size |P| x |P| (P = #
parameters)

● Hessian-free and Hessian estimation methods (eg. KFAC [Martens &
Grosse, 2015], Shampoo [Gupta et al., 2018] and follow up
enhancements)

What’s next after diagonal preconditioners?

23

● For a given weight matrix , maintain two preconditioners

Shampoo

24

Distributed Shampoo
implementation won
Algoperf benchmark!

● Update rule with learning rate η as follows:

● Previous work (collaborators): Shampoo^2 (i.e. exponent -½ instead of
-¼) is better than Shampoo in practice, and is provably close to the
optimal Kronecker product approximation of the Adagrad
preconditioner.

An equivalence between Shampoo^2 and Adafactor

25
SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
Brandfonbrener, Janson, Kakade. Submitted.

“Idealized Shampoo”:
highlighted changes in red

Theorem: These two algorithms
are equivalent!

“Idealized Adafactor”: Get rank-1
estimates in rotated space given
by Q matrices and rotate them
back to update weights

● In practice, Shampoo and Adafactor in Shampoo’s eigenbasis are NOT
equivalent and differ:
○ When using dataset averages vs running averages
○ When the eigenvector decomposition of L and R is not computed

at every step
● Key insight: eigenvector decomposition is expensive, but updating the

second moment estimates in the rotated space is inexpensive!
● Why not opt for Adam instead of Adafactor? (or any other diagonal

preconditioner?)

Insights from the idealized algorithms

26

● ShampoO with Adam in the Preconditioner’s eigenbasis
● Part of a broader space of second order algorithms where first order

methods are run in the space provided by a second order method’s
preconditioning

● Much fewer hyperparameters compared to Shampoo, and adds one
additional hyperparameter to Adam - preconditioning frequency

SOAP!

27
SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
Brandfonbrener, Janson, Kakade. Submitted.

SOAP algorithm

29
SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
Brandfonbrener, Janson, Kakade. Submitted.

Experiments

30
SOAP: Improving and Stabilizing Shampoo Using Adam. Vyas, Morwani, Zhao, Shapira,
Brandfonbrener, Janson, Kakade. Submitted.

● 40% reduction in iterations and 35% reduction in wall clock time
with respect to Adam, and 20% reduction to both with respect to
Shampoo

● More robust to higher preconditioning frequency

● More results in paper: throughput, smaller batch sizes, efficiency
improvements

● SOAP outperforms both AdamW and Shampoo on language modeling
tasks

● Need to explore further improvements (lower precision, distributed
implementation) and using SOAP on other domains (try it!)

● Second order methods potentially have further untapped potential -
diagonal preconditioning optimizers are all similar, and second order
methods like SOAP/Shampoo seem to be better!

Summary and Conclusions

31

Thank you!

32

Deconstructing Optimizers SOAP Theory on Shampoo
(collaborators)

